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Lifetime statistics for single Kevlar 49 filaments 
in creep-rupture 
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Experimental data are presented for the lifetime of single Kevlar 49 filaments under moderate 
to high stress levels at standard ambient conditions (21 ~ C, 65% r.h.). Filaments were drawn 
from two spools, A and B, taken from the same production lot. Previously we found that 
filaments from spool A were 7% lower in mean strength but much less variable in diameter 
than filaments from spool B; however, the respective variabilities in failure stress were equi- 
valent. The lifetime data were interpreted in light of a previously developed kinetic model 
embodying Weibull failure statistics and power law dependence of lifetime on stress level. 
As predicted, lifetime data at each stress level generally followed a two-parameter Weibull 
distribution with a shape parameter value near 0.2. Based on absolute stress levels, the fila- 
ments drawn from spool B had a Weibull scale parameter for lifetime about ten times greater 
than those from spool A; however, when the stress-levels were normalized by the respective 
Weibull scale parameters for short-term strength, these differences disappeared. With respect 
to power law dependence of lifetime on stress level, three distinct time domains emerged, 
each marked by a different power law exponent. Similar behaviour was observed earlier for 
preproduction Kevlar 49/epoxy strands, and the values for the power law exponents for the 
filaments agree closely with those for the strands. 

1. I n t r o d u c t i o n  
Kevlar 49w fibrous composites are routinely fabricated 
to have strengths above 1.5 GPa (200 x 103 psi), but 
in many high performance applications (cables, press- 
ure vessels, flywheels) one would like to sustain such 
stresses for long time periods. Thus the internal creep- 
rupture processes are of interest. 

In the early 1970s when Kevlar fibre was first 
introduced by du Pont, little was known about its 
molecular structure and morphology and kinetic 
models for creep-rupture were of questionable appli- 
cability. At the same time, models combining filament 
lifetime statistics and matrix viscoelasticity to predict 
composite lifetime were almost nonexistent. Thus 
Lawrence Livermore National Laboratory embarked 
on long-term creep-rupture experiments on Kevlar 
49/epoxy strands since these were the building blocks 
of the final composite structures, yet were small 
enough to test in large numbers. 

Phoenix and Wu [1] give one interpretation of  the 
strand results, and show complex behaviour for the 
lifetime distributions and their dependence on stress 
level. For  example, strength and lifetime results are 
affected by the type and volume fraction of the matrix 
in a way not predicted by the rule of  mixtures. Using 
a power law relationship to relate median lifetime to 
stress level they show a factor of two reduction in the 
value of  the exponent in going from the short-time 
regime (before 100 h) to the long-time regime, and the 

coefficient of variation of lifetime also decreases by a 
factor of  two. Similar results are also seen for Kevlar 
49/epoxy pressure vessels. Clearly the epoxy matrix 
plays an important role in both strength and creep- 
rupture, but this cannot be determined without first 
having data on the individual Kevlar 49 filaments. 
Phoenix and Wu [1] did perform limited indirect 
experiments on filaments but with inconclusive 
results. 

Recently, Phoenix and co-workers [2-5] have 
developed micromechanical models for composite 
strength and lifetime. Extensions of these models 
show promise of predicting composite lifetime distri- 
butions from fibre strength and lifetime statistics, 
matrix viscoelastic behaviour and interphase failure 
kinetics. At the same time, considerable recent work has 
been done towards understanding the supra-molecular 
structure, degree of crystallinity and larger scale 
morphology of Kevlar 49 filaments [6-9], and attempts 
have been made to use this knowledge to explain their 
creep and fracture topography [10, 11]. 

Historically, various kinetic models have been 
proposed to explain creep-rupture in polymeric 
materials. One approach has been to consider inter- 
molecular chain slippage as the underlying mechanism 
[12-14]. These models built on rate process formu- 
lations as given by Eyring [15] and Tobolsky and 
Eyring [ 16]. 

A second approach has been to consider 
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macromolecular chain scission as the underlying failure 
mechanism. This idea seems to have originated with 
Tobolsky and Eyring [16] and was further developed 
by Coleman [17]. Similar kinetic models have been 
proposed [18, 19] and have been extended to include 
local stress transfer in a polymer network [20, 21]. 

The above models for chain slippage are similar in 
parametric form to those for chain scission and, as 
pointed out by Henderson et al. [22], it is difficult to 
distinguish among them solely on the basis of lifetime 
data. However, sometimes the observed activation 
energies are low enough to rule out chain scission as 
the dominant process. In this regard Smook et al. 
[23] argued convincingly for chain slippage as the 
dominant process in ultra-high strength polyethylene 
fibres. Indeed, it is reasonable to expect that both 
kinetic processes occur simultaneously, and interact to 
yield the final fracture event, thus confounding the 
interpretation of lifetime data (see [24 26]). 

A somewhat different approach to creep-rupture 
lifetime of polymers has been developed by Christensen 
and co-workers [27-30], on a viscoelastic kinetic 
formulation of the classical crack stability problem of 
fracture mechanics. Recently it was applied to Kevlar 
49/epoxy composites [28, 30]. 

As alluded to earlier, an important aspect of creep- 
rupture in Kevlar 49 composites (and other polymers) 
is the large inherent variability in the lifetime data. 
Phoenix and Wu [1] show that a Weibull distribution 
fits lifetime data rather well with large coefficients of 
variation ranging from 50% to 150%. But for single 
Kevlar 49 filaments, the variability appears to be 
about four times larger. In fact, roughly the same ratio 
also holds for short-term strength. Most of the models 
described earlier do not deal with this variability, 
but the model we describe later will do so comprehen- 
sively. 

With the above as motivation, we have embarked 
on an experimental programme to determine the 
statistics for creep-rupture lifetime of single Kevlar 49 
filaments. Here we report some results obtained at 
room temperature. Apart from long-term failure, we 
would like to understand the relationship between the 
distributions for short-term strength and long-term life. 

Regarding short-term strength, an extensive study 
of statistical variability in the strength of single Kevlar 
49 filaments was recently performed in our laboratory 
[31]. We found that their failure stresses can be 
adequately fitted to a two-parameter Weibull distri- 
bution. However, we also found significant variability 
in the linear density (and diameter) of filaments taken 
from a cross-section of yarn. Also, both the extent of 
this variability, and the mean filament strength dif- 
fered from spool-to-spool. In view of these differences, 
and the theoretical link between the distributions for 
short-term strength and long-term life, we conjectured 
that spool-to-spool differences would also be revealed 
in filament lifetime behaviour. In fact, significant 
spool-to-spool variation in the lifetime of Kevlar 49/ 
epoxy pressure vessels was noticed by Gerstle and 
Kunz in a recent study [32], and in one case anomalous 
results were connected to the atypical size distribution 
of the filaments. 

2. S t a t i s t i c a l  m o d e l  for  f i l a m e n t  fa i lure  
In this section we describe our theoretical model for 
filament strength and lifetime. The parametric form of 
the model was originally proposed by Coleman [33], 
and theoretical arguments supporting this form were 
given by Phoenix and co-workers [3-5]. Here we 
review a few key features. 

2.1. Theoretical background 
From the theory of absolute reaction rates the mean 
time, r, between failure events (slippage or scission) 
for a given molecule under constant stress o- ~> 0 
follows 

r(a) = % exp [U(~r)/(kT)] (1) 

where % is a period of bond vibration, k is Boltzmann's 
constant, T is absolute temperature and U(a) is the 
thermal activation energy required for the event as a 
function of stress a. (In the model of Tobolsky and 
Eyring [16] 1/r o is the frequency factor kT/h, where h 
is Planck's constant.) In fact the time until such an 
event occurs is random and follows an exponential 
distribution with hazard rate l/r(a). 

For U(a), the almost universally accepted form is 
the linear approximation 

U(a) "~ U0 - 2or (2) 

where U0 is the activation energy in the absence of 
stress and 2 is the so-called activation volume. This 
approximation seems to have originatred with Eyring 
[15], and is the basis for all the previously discussed 
lifetime models [12-26]. 

Despite the widespread acceptance of the linear 
approximation in Equation 2 it has been pointed out 
by several authors that the function U(a) actually has 
significant curvature, especially in the case of chain 
scission, and this curvature has led to anomalies in the 
interpretation of creep data (see the Appendix in [4] 
for extensive discussion on this). Furthermore, the 
mathematical simplicity expected to result from the 
linear form (Equation 2) fails to materialize when one 
considers local molecular stress redistribution and 
time varying stress histories [3, 4, 34]. That being the 
case, Phoenix and Tierney [4] have argued for the 
approximation 

U(a) -~ - U0 log (a/6o) (3) 

where U0 and 60 are positive constants, and they 
showed a good fit in the case of the Morse potential 
function. This logarithmic approximation has several 
advantages: first, for a polymer under constant stress, 
the commonly used power law relationship emerges 
for the dependence of lifetime on stress level; that is, 
a linear relationship (with negative slope) emerges 
between stress and life using log-log coordinates. 
Second, when failure is preceded by multiple events 
involving local stress redistribution among molecules, 
the above power law relationship remains intact. 
Third, more sophisticated statistical formulations 
which can account for variability in lifetime are amen- 
able to time-varying loads. (See Coleman [35] for 
illustration of these last two points.) Thus the 
logarithmic approximation in Equation 3 does not 
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suffer f rom difficulties arising from the use of  the 
linear approximation in Equation 2, and is the basis 
for our model for fibre failure. 

2.2.  Deta i l s  of  t h e  m o d e l  
The distribution function for the failure time of a 
single filament, loaded according to the stress history 
l(t), t >~ O, is assumed to be of  the form 

F( t ; l )  - - 1 - e x p ( - ~ P { f ~ c [ l ( u ) ] d u } ) ,  t >~0 

(4) 

where ~P( �9 ) and ~c( �9 ) are special functions defined as 
follows: following Coleman [33] we call ~c(x), x >~ 0 
the breakdown rule and we work exclusively with the 
power law breakdown rule 

~c(x) = ~x ~ x / > 0  (5) 

where 0 and 7 are positive constants. Also, we call 
�9 (x), x >t 0 the shape function, and to impart  the 
commonly observed Weibull features to lifetime and 
strength, we assume the Weibull shape function 

�9 (x) = #x ' ,  x >~ 0 (6) 

where # and s are positive constants. 
As mentioned earlier, the above model was 

proposed by Coleman [33] on phenomenological  
grounds, but Phoenix and co-authors [3-5] were able 
to justify the basic form. In particular Phoenix [3] has 
considered a crystal model for the failure of  a single 
filament wherein the molecules are aligned in parallel 
and fail at random points due to chain scission. Local 
elastic stress redistribution occurs at these molecular 
breaks leading in time to growing clusters of  breaks, 
one of which grows catastrophically to fail the fila- 
ment. The general form of Equation 4 results with 
aspects as follows: the power law breakdown rule, 
Equation 5, is essentially a molecular failure rate, and 
arises upon combining Equations 1 and 3 whereby 

7 = ~olaoO~ (7) 

and 
Q = (fo/(kT). (8) 

The integral form in Equation 4 to handle time vary- 
ing stresses arises from a special factorization 
property of  the power law breakdown rule which is 
useful in molecular stress redistribution settings. The 
approximate Weibull shape of ~ ( . )  arises from the 
crystal model, and Phoenix and Kuo [5] showed how 
finite but random molecular length leads to values of  
the Weibull exponent s which are less than unity, as 
observed experimentally. Lastly, the constant /~ is 
proport ional  to filament volume (and thus its length) 
but it also involves the molecular stress redistribution 
constants and 0. In any case the above model, 
generated from the chain scission point of  view, has 
the parameters  and form needed to interpret our data. 

Combining Equations 4, 5 and 6, the filament 
model reduces to 

F ( t ; l )  = 1 -- exp --p?" ~u , t i> 0 

(9) 
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For creep-rupture lifetime we consider the constant 
stress history ll(t) = 50 for t >/ 0 and stress level 50. 
The lifetime distribution F(t; l~) reduces to the 
Weibull distribution 

F(t) = 1 - exp [ - ( t / r ) q ,  t >~ 0 (10) 

with shape parameter  s and scale parameter  

r = 50 c)#-I/s]j I. (11) 

Notice that a plot of  log (r) against log (50) yields a 
straight line with negative slope - Q .  

For short-term strength we consider the linearly 
increasing stress history /2(t) = ~ t ,  t >~ 0 where N? 
is the loading rate. Letting T be the failure time, 
we may use Equation 9 to calculate F(t; 12). However, 
we want the distribution function F*(x), x >~ 0 for the 
failure stress X = ~ T ,  and this is clearly F*(x) = 
F(x /~ ;  12). The final result is that the filament strength 
follows the Weibull distribution 

F*(x) = 1 - exp [-(x/a)b],  x >~ 0 (12) 

with shape parameter  b = s(Q + 1), and scale par- 
ameter 

a = [N(0 + 1)/(?#'/')1 '/(~ (13) 

Suppose that the Weibull scale parameter  for 
strength a is known at stress rate ~ and we want the 
Weibull scale parameter  r for lifetime at the stress level 
50 = a. This is easily determined from Equations 11 
and 13 to be 

r = a/[~(O + 1)] (14) 

Thus, r is the time taken in the tension test to reach the 
stress a divided by Q + 1. 

We note that the model of  Christensen and co- 
workers [29] has a similar power law framework and 
likewise generates Weibull distributions for both 
strength and lifetime, but with b -- so. This is not an 
important  difference since 0 ~> 1 is typical. However, 
their Weibull nature arises by assuming it to be true 
for short-term strength whereas ours is an approxi- 
mation obtained from more fundamental  analysis 
[3-5]. At the same time, their 0 has a different kinetic 
origin; it is twice the reciprocal of  the exponent in the 
power law creep function assumed for the material. 

Lastly, we consider the question of  residual strength 
for survivors of  a creep-rupture experiment. Suppose 
we apply the load history 

5 f o r 0  ~ t < t~ 
t a t )  = (15) 

~ ( t -  to) for t >~ to 

to a set of  filaments; this amounts  to running the 
creep-rupture experiment up to time tc and performing 
a strength test after time tc on the survivors. Letting 

= 500t c (16) 

and 

.~ = f t c [~(u -- to)] Q du 

= . ~ ( t  - to)~ + 1), (17) 

we may use Equations 9 and 15 to show that the 



probability an arbitrary filament survives to time tc is 
exp { - # 7 ~  '~} whereas the probability it survives 
past time t > tc is exp {-/x7~(~4 + ~)s}. The prob- 
ability of survival past time t > t c given survival to tc 
is the ratio of the latter probability to the former, 
namely exp { - #Ts(d + ~)s + #7~d~}. Letting T > tc 
be the failure time, the associated failure stress is 
X = ~ ( T  - to). Thus by putting x -- ~ ( t  - to) for 
~' in the above ratio, and noting that the probability 
of  failure is one minus the probability of survival, we 
obtain the distribution function for the strength of 
survivors to time tc which is 

F*(x) = 1 - exp ( - f fTs{Y~to  

+ x ~ + ' / [ ~ ( ~  + 1)]} s + ~ V ( ~ e ~ t 3 ) ,  

x >i 0 (18) 

This distribution, which we call the residual strength 
distribution, is not a Weibull distribution, but reduces 
to Equation 12 for t~ = 0. 

Consider now the median residual strength x* 
which we obtain by solving F~*(x*~) = 1/2. The result 
is 

x* = [~(Q + 1)/7]~/(~163 + #-~ log 2] L's 

- 75('Q tc } 1/~~ 1~ (19) 

Now the median strength x* for the virgin fibres is 
simply Equation 19 with tr =- 0, i.e. 

x* = [~(~ + 1)/y]~/~Q+')(# -~ log 2) '/f~+')j (20) 

Our interest is in the fractional change in residual 
strength which we define as A = (x* -- x*)/x*. Using 
Equations 11, 13, 19, and 20 we arrive at 

A = {[(t~/r)~ + log 2] '/~ - (t~/r)} ~/b _ 1 (21) 
(log 2) l/b 

It can be shown that A is positive for s < 1 and 
negative for s > 1 where we recall s is the Weibull 
shape parameter for lifetime. 

3. Experimental procedure 
In the present study we wanted to be able to apply a 
constant stress to a large number of single filaments 
simultaneously so we could generate a significant 
amount  of data in a reasonable time period. For  this 
purpose, we build a creep-rupture setup with stations 
for 48 filaments, with the individual loads applied 
by hanging weights. These weights were individually 
tailored at a given stress level because of  linear density 
variations from filament to filament as noted in [31]. 
The filaments were actually suspended from micro- 
switches which upon failure triggered a microcom- 
puter timing system with printer. 

In a previous study [31], we accumulated a substan- 
tial amount of information on distributions for the 
strength and linear density of  Kevlar 49 single fila- 
ments. In particular, two spools from a common lot 
(no. 74048), herein labelled A and B for consistency 
with our previous study, possessed significant differ- 
ences in behaviour. When compared to those from 
spool B, filaments from spool A had 7% lower mean 
strength but one-third the coefficient of  variation in 

their linear densities. These two spools were used in 
the present study. 

To prepare specimens for each stress level we first 
removed 48 filaments from segments of yarn from 
each spool, using a procedure outlined in [31]. Upon 
extraction, each filament was mounted on light card- 
board tabs (ASTM D3379) using common epoxy 
cement (3M). The gauge length used was 5cm. The 
linear density (mass/unit length) of an adjacent 
portion of each filament was measured using the 
vibroscope method (ASTM D1577-79), thus giving us 
a precise though indirect measurement of the filament 
cross-sectional area (assuming a specific gravity of 
1.44 for Kevlar 49). 

Each set of  48 filaments was assigned a stress level 
set to be a given fraction of  the Weibull scale par- 
ameter for strength for the corresponding spool as 
determined in [31]. (The respective scale parameter 
values were 3270 MPa for spool A and 3530 MPa for 
spool B.) In what follows these fractions are called 
stress ratios. For  spool A we ran four lifetime sets at 
the respective stress ratios 0.79, 0.84, 0.89 and 0.94 
whereas for spool B we ran sets at the ratios 0.74, 0.79, 
0.84 and 0.89. Thus the ratios 0.79, 0.84 and 0.89 were 
set to be the same for both spools for purposes of 
comparing their lifetime statistics. 

Using the linear density measurements, each filament 
was assigned a specially trimmed, hanging weight (bolt 
wrapped with lead solder) measured using a laboratory 
scale having an accuracy of 0.01 g. By comparison the 
weights for the lowest stress level were about 30 g. 

As mentioned earlier, we performed the creep- 
rupture experiments on a specially designed apparatus 
built in our laboratory. Its main features are illus- 
trated schematically in Fig. 1, where only one station 
is shown for clarity. The apparatus consists of  a fixed 
frame and a moveable rack which can be positioned 
vertically at will. Single pole, double throw micro- 
switches are fastened to the upper part of the frame; 
the top of the mounting tabs fitted easily into place 
with excellent alignment on the cantilever blade of  the 
microswitches. 

Just prior to the beginning of a test, the central 
portion of  each tab was cut away, and, with the rack 
in the up position, the filament was carefully placed 
into position on the apparatus. The weights were set 
into holes machined in the rack so as to avoid any 
filament tension prior to the start of the experiment. 
To start the experiment we slowly lowered the rack 
using a simple mechanical system of cables and 
pulleys, taking care to minimize any impact loading. 
At the same time we activated a 4K RAM, Rockwell 
AIM-65 microcomputer which was connected to the 
microswitches. When a filament failed, the logic state 
of the corresponding microswitch was inverted; this 
event was detected by the computer and recorded by 
a printer (Fig. 2). This monitoring system allowed us 
to determine the identity of  a filament and its lil~etime, 
typically to within about 6 sec as discussed later. As 
expected, some filaments failed upon loading or with- 
in the first few seconds; these data were not discarded, 
but required special treatment in the data analysis as 
described later. 
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Figure 1 Schematic illustration of creep-rupture setup. 
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The creep-rupture experiments were run typically 
for about  192 h, at which time the tests were censored 
(Type I censoring), if indeed survivors remained. The 
tests were run at 21~ and 65% r.h. in a controlled 
room and, during the test, the apparatus  was covered 
to avoid strength loss due to ultraviolet light, as had 
been previously seen [1]. 

Finally, in our previous study [31], filaments f rom 
spools A and B were found to follow a Weibull distri- 
bution for failure stress. For  spool A the scale and 
shape parameters  were respectively a = 3270MPa 
and b = 10.4; for spool B the values were a = 
3530 MPa  and b = 10.2. These values are used later in 
the analysis of  the results. 

4. Results  and discussion 
First we consider statistics for the linear density (LD) 
of the filament samples in the various lifetime sets. 
Table I shows that the filaments f rom spool B have 
almost three times the variability of  those from 
spool A, which is exactly what we found previously 
(Table 3 in [31]) for samples of  similar size. 

Next we consider the results of  the lifetime tests. 
Table II  contains information relevant to the testing. 
Shown for the various lifetime data sets are the stress 
ratios, the actual stress levels S ,  the actual sample 
sizes n, the number  of  filaments which failed at the 
time of loading No, the number  still surviving at the 
time of censoring No, the time of the last failure TL, 
and the time of censoring t c. 

The lifetime results for the stress ratios 0.79, 0.84 
and 0.89 for both spools are plotted, using Weibull 
coordinates, in Figs 3, 4 and 5 respectively. The graphs 
display only the lifetime data for which failure times 
are accurately known; that  is, No + N~ points 
are missing on each (though all data are properly 
accounted for in the statistical analysis discussed 
shortly). 

In Fig. 3 we have plotted an uncertainty band for 
the data from spool A arising f rom the following time 
resolution problems associated with the experimental 
apparatus: first, the accuracy of  the computer  printing 
device is about  1 sec. More important,  the loading of  
samples is not instantaneous but takes about  3 sec in 
order to build up the stress. In addition, the starting of  
the computer  was done manually and could have been 
in error by 2 or 3 sec. Thus specimen lifetimes are 
probably known only to within about  6 sec, and it 
would be unreasonable to at tempt to plot lifetime 
values of  this magnitude on the graphs. 

A more subtle point is that the Weibull lifetime 
distribution (Equation 10), was derived assuming an 
idealized step loading at time zero, whereas the actual 
loading was a ramp loading followed perhaps by a 
slightly dynamic overload, all taking place over the 
first few seconds. In this latter situation Equation 9 
would yield Equation 10 for times beyond these few 
startup seconds, except that (t/r)" would become 
[(t + to)/r]" for some constant te also of  the order of  a 
few seconds (provided the dynamic overload is small 

T A B L E I Linear density (LD) statistics for filament samples of various lifetime sets 

Stress Spool A 
ratio 

Mean LD c.v. 
(mg m- ~ )* (%) 

Spool B 

Mean LD 
(mgm -t) 

C.V,  

(%) 

0.74 -- -- -- 0.182 27.4 46 
0.79 0.170 1 [ .5 48 0.185 27.9 46 
0.84 0.168 10.6 48 0.175 23.4 48 
0.89 0.172 11.7 48 0.189 32.8 48 
0.94 0.175 10.5 48 -- -- - -  

*lmgm tisalso 1 tex as in [31]. 
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Figure 2 Block diagram of creep-rupture system. 

and of short duration). Practically, the effect is to 
subtract te from all observed failure times. Thus the 
Weibull form in Equation 10, would be in error at 
times t - to; however, this error is unimportant if the 
scale parameter r is much larger than te, and s is not 
too small, since this error is confined to the extreme 
lower tail of  F(t). Later we see that r is typically many 
orders of magnitude greater than the range just 
suggested for te. 

To estimate the Weibull scale and shape parameters 
(r and s) for lifetime at the various stress levels, we 
used a maximum likelihood estimation (MLE) 
procedure appropriate to censored samples. The 
resulting MLE values, f and d, are given in Table III 
together with their respective 90% confidence inter- 
vals (CI) as computed using the methods of Nelson 
[36] and Meeker and Nelson [37]. Also given are the 
corresponding median lifetimes. 

In the numerical analysis, a modified Newton-  
Raphson method was used to solve the MLE equations 
(see, for example, Nelson [36]). In applying the MLE 
procedure we arbitrarily assigned a lifetime value of 
1 sec to all No initial failures; in this regard we found 
the MLE procedure to be very robust in that varying 
these assigned times a few seconds had virtually no 
effect on the estimates, provided that the resulting 
estimate i was orders of magnitude larger, as was 
typically the case. In other words the MLE procedure 
weighs heavily the longer failure times nearer the 
sample median, and the time resolution difficulties 
discussed earlier are typically not a problem. 

From the results presented, there appear to be signi- 
ficant differences between the results from spools A 
and B, as might have been anticipated from the 
strength results from our previous study [31]. The 
most obvious difference is that at any absolute stress 
level the lifetimes of filaments from spool B tend to be 
one to two orders of magnitude larger than those from 
spool A. This is also seen in Fig. 6, in which we plot 
the Weibull scale parameter estimate ? against 
absolute filament stress level L,e using log-log co- 
ordinates. Also shown are the 90% CIs as given in 
Table III. On the other hand, Fig. 7 replots the Weibull 
scale parameter estimates f against stress ratio ~b using 
log-log coordinates; and we see that these differences 
in lifetime virtually disappear. (In locating an equi- 
valent f value for the strength scale parameter a, that 
is for q~ = 1, we were guided by Equation 14.) The 
remaining differences are in fact small compared with 
the sizes of the confidence intervals for these par- 
ameters as given in Table III, and shown in Fig. 6. 

We attempted to apply a formal test of  equality of 
the Weibull shape and scale parameters of these spools 
at each stress ratio, as proposed by Thoman and Bain 
[38]. Strictly speaking their test is valid only for un- 
censored data (there seems to be no corresponding test 
in the literature for censored samples), though our use 
of their test in this situation is conservative (in that a 
conclusion of  equality of the parameters under their 
test implies the same under a more refined test but not 
vice versa). In applying the test separately at the stress 
ratio 0.79 and 0.89 we were able to rule out significant 
differences (e = 0.05 level) in the respective Weibull 
shape and scale parameters for spools A and B; how- 
ever, significant differences at the stress ratio 0.84 
could not be ruled out, and may indeed emerge under 
a more refined test which takes censoring into account. 
Such results are not surprising in view of the amount  
of overlap in the respective confidence intervals 
(Table III). Later we suggest that the differences 
apparent at the stress ratio 0.84 are actually artifacts 
of initial dynamic overloads in the case of  spool B. 

On the other hand, two pieces of evidence suggest 
that the variability in lifetime for spool B is slightly 
larger than for spool A. First, looking at all the 
lifetime results together (Table III), the shape par- 
ameter estimates # at each stress level are consistently 
lower for spool B; in fact the average value of  # for 
spool A is 0.222 (coefficient of variation = 7%) 
whereas the average value for spool B is 0.175 
(c.v. = 17%). Second, in Table IV we show the 
observed number of instantaneous failures No which 
occurred upon loading in the lifetime experiments; the 

TAB L E I I Stress levels and other quantities associated with the lifetime data sets 

Stress Spool A Spool B 
ratio 

. No Nc TL tc ~e 
(MPa) (h) (h) (MPa) 

No % TL 
(h) 

t c 

(h) 

0.74 . . . . . .  2626 46 7 21 
0.79 2581 48 5 21 151.5 190.6 2791 46 6 20 
0.84 2742 48 8 11 129.0 209.6 2955 48 20 ll 
0.89 2903 48 13 7 26,4 29.1 3119 48 16 3 
0.94 3065 48 29 0 142 .8  complete . . . .  

sample 

671.8 
178.8 
122.6 
95.9 

691.9 
178.8 
191.9 
192.0 
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Figure 3 Weibull plot for 0.79 stress ratio. O, Spool A 
(N o = 5); A, Spool B (N o = 6); OA, multiple obser- 
vations. 
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Figure 4 Weibull plot for 0.84 stress ratio, o ,  Spool A 
(N o = 8); zx, Spool B (N o = 20); oA,  multiple obser- 
vations. 
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T A B L E I I I M LE values and 90% confidence intervals (CI) for Weibull scale f and shape g parameters for filament lifetime 

Stress Spool A Spool B 
ratio 

f (h) ~ median f (h) .~ median 
(90% C1) (90% C1) (h) (90% CI) (90% CI) (h) 

0.74 - - - 2902 0.157 28 I. 1 
(310,1, 27 166) (0.116, 0.212) 

0.79 443.8 0.202 72.18 518.3 0.183 69.9 
(85.11, 2314) (0.152, 0.269) (78.79, 3409) (0.136, 0.246) 

0.84 32.76 0.221 6.25 11.46 0.146 0.93 
(9.74, 110.2) (0.175, 0.279) (1.828, 71.77) (0.116, 0.185) 

0.89 1.570 0.245 0.35 1.156 0.212 0.21 
(0.55, 4.48) (0.198, 0.303) (0.3536, 3.777) (0.174, 0.258) 

0.94 0.0189 0.222 0.0036 -- -- - 
(0.006 10, 0.0586) (0.185, 0.268) 

results for spool B tend to be larger at each stress level. 
In contrast, in our earlier study [31] we found no 
significant differences in the variability of the short- 
term strength (in units of stress) for the two spools. 

Now the number of  instantaneous failures No at a 
given stress level follows a binomial distribution with 
mean no = np and standard deviation S.D. = 
[np(1 - p ) ] m  where p is the probability of  instan- 
taneous failure of a given filament, and n is the number 
of  filaments loaded. In Table IV we give the observed 
numbers N o together with the means n* and respective 
standard deviations, S.D., calculated assuming p is 
determined by the Weibull distributions for strength 
obtained in [31]. (All numbers are rounded to the 
nearest integer.) We also give the means n~ and respec- 
tive standard deviations, S.D., calculated assuming p is 
determined by our fitted Weibull lifetime distributions 
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(Table III) evaluated at t = 5 sec (roughly the limit of 
resolution discussed earlier). In the case of spool A, 
the agreement is good except for the stress ratio 0.94 
where the number observed seems high. However, in 
this case the fitted lifetime distribution does predict a 
number n~ in accordance with n* from the strength 
experiments. In the case of spool B, the agreement is 
quite reasonable except at the stress ratio 0.84 where 
the number of  initial failures seems somewhat large, as 
indeed does n~ relative to n*. 

These comparisons suggest perhaps that slight 
dynamic overloads occurred upon loading in some 
cases leading to appreciable values for the shift times 
te described earlier in this section. However, only in 
the case of  spool B at the stress ratio 0.84 does it 
appear that the lifetimes were reduced sufficiently to 
moderately decrease the estimates for the Weibull 

-1 '~' 

-2 

-3 

-4 

Figure 5 Weibull plot for 0.89 stress ratio. O, Spool A 
(N o = 13); zx, Spool B (N O = 16); OA, multiple obser- 
vations. 
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T A B L E I V Compar ison of  observed and predicted numbers  of  instantaneous failures upon loading in lifetime experiments 

Stress Spool A Spool B 
ratio 

N O n~? n~$ N O n~w 
(S.D.) (S.D.) (S.D.) (S.D.) 

0.74 - - - 7 3 4 

(1) (2) 

0.79 5 4 4 6 4 4 

(2) (2) (2) (2) 
0.84 8 8 5 20 8 ) !  

(3) (2) (3) (3) 

0.89 13 12 8 16 12 10 
(3) (3) (3) (3) 

0.94 29 20 21 - - - 

(3) (3) 

tBased on Weibull strength distribution with a = 3270 MPa  and b = 10A [3l]. 
~Based on Weibull lifetime distributions at t = 5 sec. 
w Based on Weibull strength distribution with a = 3530 MPa and b = 10.2 [31]. 

shape and scale parameters. This last notion seems 
supported on Fig. 7 where the associated scale par- 
ameter # for q~ = 0.84 appears to fall short of  what 
one might anticipate. In fact, Fig. 4 shows that the 
actual lifetime observations for spool B which are of 
the order # -- 11.46 h all tend to lie to the right of the 
Weibull plot for spool B, and indeed fall closer to that 
for spool A. Thus, for q5 = 0.84, the true Weibull 
parameters r and s for spool B are possibly much 
closer to those for spool A than Figs. 4 (and 7) would 
indicate. 

We tension tested the survivors of  the lifetime 
experiments, that is, those specimens that had not 
failed at the time of censoring. According to Equation 
21 their median strength x* ought to be higher than 
the virgin medians x*, since we observed # < 1. 
Table V compares our theoretical A and experimental 

values for the fractional increase in median strength 
of the survivors. To calculate these we used Weibull P 
and # values from Table III and Weibull h and/~ values 
from our earlier study [31]. Also, to get the A values we 
divided the sample medians by x* = a(log 2) m/b and 
subtracted unity. In all cases the residual median 
strength exceeds the virgin median as predicted, and 
the numerical agreement is quite good in some cases. 

Equation 11 of our theoretical model suggests that 

"~ 3100 
13_ 

~E 

2950 
"4 

> 2800 

u)  

2650 

2500 

t n ( ~ )  

4 2 0 2 4 6 
I I I I I I 

---O 

I 
10 -2 

z~ 

" - - O - -  
A, 

A , - -  

o 

O 

I I I I I 
10 "1 10 o 101 102 103 

SCALE P A R A M E T E R ,  ~ (h) 

1876 

a plot of the lifetime scale parameter r against the 
stress level ~ plotted using log-log coordinates ought 
to be a straight line with slope - ~ ,  where ~ is 
the exponent in the power law breakdown rule of  
Equation 5. While Fig. 6 may tend to suggest such 
behaviour, Fig. 7 suggests a more complicated relation- 
ship. [Here log 4) = (log 5e - constant) so that the 
slopes are unchanged in going from Fig. 5 to Fig. 6.] 
In Fig. 7 we have drawn three connecting lines to the 
data: one with ~ = 85 for times up to 1 h, one with 
~o = 45 for times between 1 and 400 h, and one with 

= 30 for times after 400 h. 
Phoenix and Wu [1] have observed very similar 

behaviour for Kevlar 49/epoxy strands and spherical 
pressure vessels (see Figs 4 and 10 in [1]; on their 
scales, the Weibull scale parameter for lifetime and the 
median lifetime will be virtually equivalent). In fact 
for the most complete data set, PRD49III  strands 
(preproduction Kevlar 49) impregnated with a Union 
Carbide epoxy (ERL2258-ZZL0820), they show three 
connecting lines with the respective slopes 0 = 85, 

= 45 and Q = 27, again with line transitions at 
about 1 and 400 h. 

We mention that Christensen and Glaser [28] also 
analysed the data using their crack growth method- 
ology, and arrived at ~ = 45.6. However, the decrease 
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Figure 6 Absolute filament stress plotted 
against Weibull lifetime scale parameter.  
�9 Spool A, zx, Spool B. 
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plotted against Weibull lifetime 
scale parameter, o, Spool A, zx, 
Spool B; O, tension tests. 

in ~ at later times was explained using a chemical 
degradation component of the model to account for 
the suspected effects of  ultraviolet light. Our exper- 
iments were conducted in the dark. 

In Equation 12, the Weibull shape parameter for 
strength is b = s(~ + 1) so that the ratio of the 
Weibull shape parameters for strength 6 and lifetime 
~r ought to be close in magnitude to the exponents ~ on 
Fig. 7. Using the values for ~ in Table III and values 
for/~ given earlier we find 42 < /~/~ < 52 for spool A 
and 48 ~< /~/2 ~< 70 for spool B, which is of  the right 
order of magnitude for Q; however, these ratios are 
erratic and furthermore do not predict the decrease in 

with decreasing stress level. The latter would require 
a steady increase in s with decreasing stress level (as 
was observed for Kevlar 49/epoxy strands by Phoenix 
and Wu [1]) and this does not happen. In fairness to 
the model, the time frame of  the strength data deter- 
mining/~ is orders of  magnitude shorter than that for 
s at the lower stress levels, so that the molecular 
mechanism of  failure could be different. Of  course the 
erratic behaviour in d is not unexpected in view of  the 
width of the confidence intervals in Table III. On the 
other hand, the values for both 6 and ff are roughly the 
same for spools A and B, yet the values for g are, on 
the whole, about 20% less for spool B. The model 
sheds no light on this difference. 

In short-term strength, the Weibull shape par- 

T A B L E  V Comparison of theoretical and experimental frac- 

tional increases in median strength of survivors of  lifetime exper- 

iments 

Stress Spool A Spool B 

ratio zx* ~& 

0.74 - - 0.079 0.044 

0.79 0.080 0.058 0.081 0.059 

0.84 0.12 0.140 0.12 0.048 

0.89 0.14 0.230 - - 

0.94 . . . .  

*Calculated from Equation 21. 

ameter for Kevlar 49/epoxy strands [l] is about three 
times that for single filaments (30 compared to 10). 
However, in lifetime, the corresponding ratio of the 
Weibull shape parameters seems to range from about 
three at high stress levels (0.6 compared to 0.2) to 
almost 10 at lower stress levels (2 compared to 0.2), 
again reflecting the constancy of  s with stress level. 
Now in the micromechanical models of  Phoenix and 
co-workers [3, 4] this composite to fibre ratio is deter- 
mined by an equation (see Equation 6.23 in [4]) which 
involves the product s~ in our notation, and 
approximately this ratio is inversely proportioned to 
s#. If  s is to remain constant as observed, the model 
would require that Q decrease by a factor of  three as 
the stress level is decreased, and this is indeed what 
happens experimentally. From this point of  view the 
constancy of s with stress level is understandable for 
single fibres. 

In his model for the kinetic failure of a Kevlar 
crystal as a result of molecular chain scission, Phoenix 
[3] assumed a bond energy of  3.35 x 105Jmol 
(80kcalmol -~) for the failure of  C - N  bonds and 
predicted # = 54 at room temperature. While this 
value falls in the middle of  the Q values in Fig. 6, one 
cannot conclude that chain scission is the dominant 
failure process. In any case it may be worthwhile 
modifying the model to include chain slippage as well 
as scission to see if decreasing values of # with 
increased time scale can be predicted. Including other 
creep effects as described in Ericksen [10] may also be 
worthwhile. 

Finally, the model in [3] does not predict massive 
chain scission in Kevlar filaments loaded to failure, 
and in fact predicts that less than one C - N  bond in 
10 l~ will be failed in regions away from the fracture 
surface. Thus the meagre evidence of chain scission in 
the study of Brown et al. [11] does not in our opinion 
rule out. chain scission as the dominant molecular 
failure process in Kevlar. 

Lifetime experiments at elevated temperatures are 
underway and will be reported on later. 
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5. Conclusions 
We have conducted an experimental study on the 
creep-rupture of single Kevlar 49 filaments, and con- 
sider the major conclusions to be as follows: 

1. The lifetimes of single Kevlar 49 filaments follow 
a two-parameter Weibull distribution with shape par- 
ameter near 0.2, as predicted theoretically. 

2. At the same absolute stress level, filaments taken 
from two spools which earlier showed a 7% difference 
in median filament strength also showed a corre- 
sponding difference in median lifetime of about an 
order of magnitude. 

3. At the same stress ratio (stress level divided by 
Weibull scale parameter for short-term strength) the 
Weibull lifetime distributions for filaments from the 
two spools differed insignificantly. 

4. The dependence of lifetime on stress level was 
according to a power law within each of three distinct 
time domains with three different power-law exponents. 
The time domains and exponents were in excellent 
agreement with those observed by other workers for 
preproduction Kevlar 49/epoxy strands. 
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